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The note identifies two errors in the proof of the Chebyshevity of Johnson’s
example of a nonconvex subset of the inner product space of all finite sequences.
Corrections are given. € 1993 Academic Press, Inc.

In 1934, Bunt [B] proved that each Chebyshev set in a finite-dimen-
sional Hilbert space must be convex. Several different proofs of this fact,
along with some generalizations, were later given by numerous researchers
(see, e.g., [D] for a detailed historical exposition). However, it is still
unknown after 58 years whether this is true in infinite-dimensional Hilbert
space. Klee [ K] conjectured, and provided supporting evidence, that there
exist nonconvex Chebyshev sets in infinite-dimensional Hilbert spaces.

In a recent paper, Gordon G. Johnson [J] constructed the first example
of a nonconvex Chebyshev set in the incomplete inner product space of all
finite sequences. We paraphrase a quote from [D]: “This example is the
closest thing to a nonconvex Chebyshev set in a Hilbert space that has
been constructed. It strongly supports Klee’s conjecture that a nonconvex
Chebyshev set must exist in some infinite-dimensional Hilbert space.”
Johnson’s proof that the set he constructed is Chebyshev is ingenious,
lengthy, and complicated. We found two flaws in his proof but were able
to repair them. In fact, our corrections provide a concise proof of the
Chebyshevity of the nonconvex set. We feel that Johnson’s example may
provide the framework for resolving the problem, and for answering Klee’s
conjecture. It is our hope that we have assisted the interested readers in a
better understanding of Johnson’s proof.

We state Johnson’s example and adopt his notation without further
explanation:

E,={(x,x3.,%,,0,0,..):x;eR, 1 <i<n}

n=1
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For x=(x;,x; ., %,,0,0,..)cE, define the norm of x by |x|=
(X7_, x})"% That is, E is the subspace of /? consisting of all elements
having finitely many nonzero components.

ag=2, Ap=1, Fo=1, Lo=1

d ={(x,,0,0,..): ~Fy<x,<aF,}

Li(x\)=aoFi+{ag—1) Fox, — x3, (x,,0,0, ...)ed,

Fi(x)=2L(x,)/[as+ 1]

Si={lx;, ~F(x,10,0,..):(x{,0,0,..)ed, }.
Inductively,

a,=1+A4,L,  where A, is a positive number to be determined later.
d,,;={(x1, %3, s %,,1,0,0,..): =F,<x,,,<a,F,},
L,,,=a,Fi+(a,—1)F,x,.,—x2,,, (x;,X3,.,%,,,,0,0,..)ed,,,,
Fi  =2L,,\/[a,+1],
S ={(xp, X0, s Xpi1, = Foy1,0,0,.) 0 (2, X0y ey X, 1, 0,0, 0 €4d, 4 1 )

Then, |J°_, S, is a nonconvex Chebyshev subset of E.
The proof is based on the following four statements:

STATEMENT 1. A, can be chosen such that any eigenvalue A of the matrix
(D, ;F1,./2) satzsfzes —1<i<.

STATEMENT 2. Suppose that K is a closed, bounded, and convex subset of
R” which has nonempty interior, and D is another bounded closed set in R"
which has a simply connected interior. If F: K— R", is continuous, F|.x is a
homeomorphism from 0K to 0D, where 0K, 0D are boundaries of K and D,
respectively, and F is locally a homeomorphism in the interior of K, then F
is a homeomorphism from K to D.

STATEMENT 3. d,,, is bounded, closed, and convex. Let G, , ,(r,, X2y ey
xn+1) denote ((Dlfo+l/2)+xl7 (D Frzg+l/2)+x23'"a( n+|F +1/2)
X, ). Then G, , | is a homeomorphism from d, . | onto its image. Let I, ,
be the set bounded by S,, and d, .. Then I, is convex.

STATEMENT 4. S, <S8, for n=1,2,... Let E,={(x;, .., x,,00,..):

x;eRY. Then, for any y in E,, with revpect to Uy, S,, vy has a unique
nearest point in S, , ,: d(y, U,,:, S h=dy, S, 1)
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Since E=)_, E,,, then J)_, S, is a nonconvex Chebyshev subset of
E by Statement 4. Once we have proved Statements I and 2, the proofs for
Statements 3 and 4 are clear and can be found in Johnson’s paper.
Statement 2 appeared as Lemma A in [J]. The proof contained gaps and
is not convincing. Also, in the proof that |JG,, | = ID,_,F§+1/2+¢SU| #0
on page 312 of [J], a formula for the expansion of a determinant was
incorrectly applied. However, both of these errors can be rectified so that
Johnson’s example is correct.

We first prove Statement 2. It is a purely topological lemma. One can
show that the condition that D have a simply connected interior is
unnecessary. But for Johnson’s example, this weaker form of the statement
is sufficient.

Proof of Statement2. Since 0D is homeomorphic to ¢K, which is
homeomorphic to the unit sphere of R”, then, by the Jordan Separation
Theorem, R"—¢éD = W, u W,, where W,, W, are disjoint, open and con-
nected sets with W, bounded. Suppose F(K) ¢ D. Then there exists y ¢ D,
ye F(K) such that any open neighborhood of y contains some points not
in F(K). Since ye F(K), v ¢ D, there exists x eint K with F(x)=y. But this
is impossible since y is not an interior point of F(K), which contradicts the
assumption that F is Jocally a homeomorphism. So, we have that F(K)c= D
and F(int K) < int D. Moreover, note that int D\ F(int K) =int D\F(K) is
both open and closed in int D and that F(int K)=int D. Thus F: K — D is
onto.

For any yeint D, F~'(y) is a compact set with the discrete topology.
Thus, the cardinality of F~'(y) is finite. We may assume that F !(y)=
{x1, X3, ., X }. Since F maps ¢K to éD, x;eint K for each 1<i<k.
Note that K is compact. Then, the assumption that F is locally a
homeomorphism implies that card F “!(y) is locally a constant, Therefore,
it has to be a constant throughout int D, for int D is pathwise connected.
Then F is a covering map from int K to int D. Note that int D is simply
connected. We conclude that F is one to one. Thus F: K — D is one to one,
continuous, and onto, i.e., a homeomorphism.

In order to show Statement 1, we need three lemmas. Lemmal is a
combination of Lemmas E and F in Johnson’s paper. The proof of
Lemma 2 is quite straightforward and is omitted here.

Lemma 1. D,L,, D, L, are bounded on d, for 1 <i,j<n.

LEMMA 2. G(x,, .., X,, V) is a convex function on a convex set D < R"*!
if and only if for each (B, .. B,)eR" and each {x,, .., x,, yv)eD the
Sfunction H(t, y) defined by

H(t, y)=G(x,+1B,, x5+ tf5, ., X, + 1, V)
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is a convex function on its domain (which is a nonempty convex subset

of R?).

LEMMA 3. Let f(ty=F(x +18,, x;+18,, .., x,+1B,), where F(x,, ..., x,
has the second order derivatives on a convex set D. Then —1 < f(0) <O, for
all possible unit vectors (B, .., B,)eR" if and only if —1 < i <0 holds for
any eigenvalue 4 of (D, ;F).

Proof. 1t suffices to observe that

f0)= z Di.;‘FIBiﬁj at (xy, .y X,)

Lj=1
Proof of Statement 1. We prove the statement by induction on n. When
n=1,
L(x)=2+x,—x] and Fix)/2=52+x,—x})
D, Fi2=—3.
Then —1 <D, F}/2<0. Now suppose —1<4<0 is true for any eigen-
value 4 of (D, ;F}/2). Let f(1)=F,(x,+1,, x,+1B,, ... x,+1f,), where
(xy, .., x,)ed,, and (f#,, ..., B,) is a unit vector in E, such that (x, + 1§,
xy+ 185, .., x,+1B,)ed, for some ¢ around zero. Let a(t)=a,(x, +18,,
X+ tfq, oy X+ 18,).
We list some obvious facts:
1. ff!is bounded on d, if and only if F,(D,F,) is bounded on 4,,.
2. Da,=A,D,L,, D,,a,=A,D, L, A, is to be determined later.
However, we may assume 0 < 4, < 1. Then we have

lim 4'(1)= lim &"(1)= lim (a(t)—1)=0 ond,.
Ay =0 A4, -0 Ay =0

To show that (D, ;F, /2) is negative definite, it suffices to show that

a(1) (1) + (a(1) — l)f(t)_v—y2>>
a(t)+1

(Dl,yH(ts _V))=<Dr,y(

is negative definite for an appropriate 4,. Without causing any confusion,
we use 4q, f, a’,a”, [ instead of a(t), f(¢), a@'(t), a"(¢), f'(t), respectively, in
the following calculation.

A straightforward calculation gives us

0H a(f+y) N 2aff +(a—- 1) f'y

ot (a+1)? a+1
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0H (a—1)f—2y O°H 2
_———, 2:— <0

oy a+1 dy a+1
8*H _a’f+ (a— l)f’_a’((a—l)f— Zy)_(a—])f'+2a'(f+y)
drdy a+1 (a+1)? T oa+1 (@a+1)

and
OH _2dff" +2af * + 2aff " +af'y+(a—1)f"y d'Qaff’ +(a=1)["y)
ot a+1 (a+1)?

LU+ 24y 2 ()

(a+1)° (a+1)°
Then
PHY PHPH (a—1)f? dd(f+yfa=1f da*(f+y)
(0: ay) arr oyt (a+1)? (a+1)° (a+1)*
4a'ff" + daf> + daff” +2d'f y +2a—1) "y
+ @t 1)
4 2a"°(f+y) +4a'f (f+y)—2a'f ' (2af + (a—1) y)
(a+1)°

d4a'*(f+y)’
T (a+ 1)t

Note that L, 2, (f+y)f, (f+ ) f.y, L,f"y are all bounded on d,
and that lim, 4 (a+1)=2, lim, ,da =lim, ,a"=lim, ,(a—1)=0.

The main part of

521‘[)2 0°H ¢°H is daf’? + daff”
ot oy ot ay? (a+1)°

when 4, is small. But 2(f"> +ff")=(f?); =X, , D, ,F}B.B, <0 by assump-
tion. Therefore, we can choose A, small enough that

(82H>2 ’H 0*H

aray) "o o

Since 0*H/dy* <0, we conclude that (D,  H(t, y)) is negative definite.

To show that all eigenvalues of (D, ,F2, /2) are greater than — 1, we need
to show that (D, ;F?, /2 + 4, ) is positive definite, which is equivalent to

showing that



JOHNSON’S NONCONVEX CHEBYSHEV SET 157

*H  O*H
l4+—
arr ot dy
0*H 8’H
t=F
ot Oy dy
is positive definite.
Note that
o*H -2 a—1
— 4+ l=——7+1= >0,
ay? * a+1 a+1
and that

(82H>2 0*H &*H ¢*H o°H
ot oy orr oyt o @’

_la— 1)2f'2+4a/(f+y)(a— NS

(a+1)? (a+1)?
N da'ff' +daf *+4aff" +2a'f 'y +2a~-1)f"y
(a+1)?
+2a”(f+y)2+4a’f’(f+y)—2a'f’(2af+(a— )y)
(a+1)°
2a'ff" +2af "+ 2aff " +af'y+(a—1)f"y
h a+1
_a"(f+ YV +2f(f+y)—df Qaf+(a—1)y)
(a+1)?

2¢%(f+y) a-1
(a+1)P  a+1
C(a—1)f7 4a(f+y)a=1)f"
T (a+1)? (a+ 1)
B (a—-D)R2a'ff' +af'y+(a—1)["y)
(a+1)?
(@a=1)2a(f"+ff")
(a+1)?
_(a— Dla"(f+yY +2df(f+y)—af' Qaf+(a—1)y)]
(a+1)

2a’2(f+)')2_a—1
@+t _a+l
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By an argument similar to that given before, we have that the main part
of the above expression is

2a( [+ M) Py a—l 3 "
—(a—l)( ar ) +a+l)_ ——-(a+l)2(a+l+2a(j +/).

Since /2 + ff” > — 1 by assumption and d, is a compact set in E,, we can
choose A4, to be small enough that a+ 1 + 2a(f">+ff”)> 0. Then

J*H\? ¢@*H ¢*H O&°H &°H
—] - === <0
at oy ars ooy o oy?
Hence,
O*H *H
14+ —
cre at Oy
8*H - a*H
at 3y &y?
is positive definite.
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